Source code for elliot.recommender.latent_factor_models.CML.CML

"""
Module description:

"""

__version__ = '0.3.1'
__author__ = 'Felice Antonio Merra, Vito Walter Anelli, Claudio Pomo'
__email__ = 'felice.merra@poliba.it, vitowalter.anelli@poliba.it, claudio.pomo@poliba.it'

import pickle

import numpy as np
from tqdm import tqdm

from elliot.dataset.samplers import custom_sampler as cs
from elliot.recommender import BaseRecommenderModel
from elliot.recommender.latent_factor_models.CML.CML_model import CML_model
from elliot.recommender.recommender_utils_mixin import RecMixin
from elliot.utils.write import store_recommendation
from elliot.recommender.base_recommender_model import init_charger


[docs]class CML(RecMixin, BaseRecommenderModel): r""" Collaborative Metric Learning For further details, please refer to the `paper <https://www.cs.cornell.edu/~ylongqi/paper/HsiehYCLBE17.pdf>`_ Args: factors: Number of latent factors lr: Learning rate l_w: Regularization coefficient for latent factors l_b: Regularization coefficient for bias margin: Safety margin size To include the recommendation model, add it to the config file adopting the following pattern: .. code:: yaml models: CML: meta: save_recs: True epochs: 10 batch_size: 512 factors: 10 lr: 0.001 l_w: 0.001 l_b: 0.001 margin: 0.5 """ @init_charger def __init__(self, data, config, params, *args, **kwargs): """ Create a CML instance. (see https://vision.cornell.edu/se3/wp-content/uploads/2017/03/WWW-fp0554-hsiehA.pdf for details about the algorithm design choices). Args: data: data loader object params: model parameters {embed_k: embedding size, [l_w, l_b]: regularization, lr: learning rate} """ self._params_list = [ ("_user_factors", "factors", "factors", 100, None, None), ("_learning_rate", "lr", "lr", 0.001, None, None), ("_l_w", "l_w", "l_w", 0.001, None, None), ("_l_b", "l_b", "l_b", 0.001, None, None), ("_margin", "margin", "margin", 0.5, None, None), ] self.autoset_params() self._item_factors = self._user_factors if self._batch_size < 1: self._batch_size = self._data.transactions self._ratings = self._data.train_dict self._sampler = cs.Sampler(self._data.i_train_dict) self._model = CML_model(self._user_factors, self._item_factors, self._learning_rate, self._l_w, self._l_b, self._margin, self._num_users, self._num_items, self._seed) @property def name(self): return "CML" \ + f"_{self.get_base_params_shortcut()}" \ + f"_{self.get_params_shortcut()}"
[docs] def train(self): if self._restore: return self.restore_weights() for it in self.iterate(self._epochs): loss = 0 steps = 0 with tqdm(total=int(self._data.transactions // self._batch_size), disable=not self._verbose) as t: for batch in self._sampler.step(self._data.transactions, self._batch_size): steps += 1 loss += self._model.train_step(batch) t.set_postfix({'loss': f'{loss.numpy() / steps:.5f}'}) t.update() self.evaluate(it, loss.numpy()/(it + 1))
[docs] def get_recommendations(self, k: int = 100): predictions_top_k_test = {} predictions_top_k_val = {} for index, offset in enumerate(range(0, self._num_users, self._batch_size)): offset_stop = min(offset + self._batch_size, self._num_users) predictions = self._model.predict(offset, offset_stop) recs_val, recs_test = self.process_protocol(k, predictions, offset, offset_stop) predictions_top_k_val.update(recs_val) predictions_top_k_test.update(recs_test) return predictions_top_k_val, predictions_top_k_test