Source code for elliot.recommender.latent_factor_models.PMF.probabilistic_matrix_factorization_model

"""
Module description:

Mnih, Andriy, and Russ R. Salakhutdinov. "Probabilistic matrix factorization." Advances in neural information processing systems 20 (2007)

"""

__version__ = '0.3.1'
__author__ = 'Vito Walter Anelli, Claudio Pomo, Daniele Malitesta'
__email__ = 'vitowalter.anelli@poliba.it, claudio.pomo@poliba.it'

import os
import numpy as np
import tensorflow as tf
from tensorflow import keras

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'


[docs]class ProbabilisticMatrixFactorizationModel(keras.Model): def __init__(self, num_users, num_items, embed_mf_size, lambda_weights, gaussian_variance, learning_rate=0.01, random_seed=42, name="MF", **kwargs): super().__init__(name=name, **kwargs) tf.random.set_seed(random_seed) self.num_users = num_users self.num_items = num_items self.embed_mf_size = embed_mf_size self.lambda_weights = lambda_weights self.initializer = tf.initializers.RandomNormal(stddev=0.01) self.user_mf_embedding = keras.layers.Embedding(input_dim=self.num_users, output_dim=self.embed_mf_size, embeddings_initializer=self.initializer, name='U_MF', embeddings_regularizer=keras.regularizers.l2(self.lambda_weights), dtype=tf.float32) self.item_mf_embedding = keras.layers.Embedding(input_dim=self.num_items, output_dim=self.embed_mf_size, embeddings_regularizer=keras.regularizers.l2(self.lambda_weights), embeddings_initializer=self.initializer, name='I_MF', dtype=tf.float32) self.user_mf_embedding(0) self.item_mf_embedding(0) self.predict_layer = self.dot_prod self.noise = keras.layers.GaussianNoise(gaussian_variance, input_dim=1) self.activate = keras.activations.sigmoid self.loss = keras.losses.MeanSquaredError() self.optimizer = tf.optimizers.Adam(learning_rate)
[docs] @tf.function def dot_prod(self, layer_0, layer_1): return tf.reduce_sum(layer_0 * layer_1, axis=-1)
[docs] @tf.function def call(self, inputs, training=None, mask=None): user, item = inputs user_mf_e = self.user_mf_embedding(user) item_mf_e = self.item_mf_embedding(item) mf_output = self.predict_layer(user_mf_e, item_mf_e) # [batch_size, embedding_size] output = self.activate(mf_output) return output
[docs] @tf.function def train_step(self, batch): user, pos, label = batch with tf.GradientTape() as tape: # Clean Inference output = self.noise(self(inputs=(user, pos), training=True)) loss = self.loss(label, output) grads = tape.gradient(loss, self.trainable_weights) self.optimizer.apply_gradients(zip(grads, self.trainable_weights)) return loss
[docs] @tf.function def predict(self, inputs, training=False, **kwargs): """ Get full predictions on the whole users/items matrix. Returns: The matrix of predicted values. """ output = self.call(inputs=inputs, training=training) return output
[docs] @tf.function def get_recs(self, inputs, training=False, **kwargs): """ Get full predictions on the whole users/items matrix. Returns: The matrix of predicted values. """ user, item = inputs user_mf_e = self.user_mf_embedding(user) item_mf_e = self.item_mf_embedding(item) mf_output = self.predict_layer(user_mf_e, item_mf_e) # [batch_size, embedding_size] output = self.activate(mf_output) return tf.squeeze(output)
[docs] @tf.function def get_top_k(self, preds, train_mask, k=100): return tf.nn.top_k(tf.where(train_mask, preds, -np.inf), k=k, sorted=True)