Source code for elliot.recommender.neural.NAIS.nais

"""
Module description:

"""

__version__ = '0.3.1'
__author__ = 'Felice Antonio Merra, Vito Walter Anelli, Claudio Pomo'
__email__ = 'felice.merra@poliba.it, vitowalter.anelli@poliba.it, claudio.pomo@poliba.it'
__paper__ = 'FISM: Factored Item Similarity Models for Top-N Recommender Systems by Santosh Kabbur, Xia Ning, and George Karypis'


import numpy as np
from tqdm import tqdm

from elliot.dataset.samplers import pointwise_pos_neg_ratio_ratings_sampler as pws
from elliot.recommender import BaseRecommenderModel
from elliot.recommender.base_recommender_model import init_charger
from elliot.recommender.neural.NAIS.nais_model import NAIS_model
from elliot.recommender.recommender_utils_mixin import RecMixin
from elliot.utils.write import store_recommendation


[docs]class NAIS(RecMixin, BaseRecommenderModel): r""" NAIS: Neural Attentive Item Similarity Model for Recommendation For further details, please refer to the `paper <https://arxiv.org/abs/1809.07053>`_ Args: factors: Number of latent factors algorithm: Type of user-item factor operation ('product', 'concat') weight_size: List of units for each layer lr: Learning rate l_w: Regularization coefficient l_b: Bias regularization coefficient alpha: Attention factor beta: Smoothing exponent neg_ratio: Ratio of negative sampled items, e.g., 0 = no items, 1 = all un-rated items To include the recommendation model, add it to the config file adopting the following pattern: .. code:: yaml models: NAIS: meta: save_recs: True factors: 100 batch_size: 512 algorithm: concat weight_size: 32 lr: 0.001 l_w: 0.001 l_b: 0.001 alpha: 0.5 beta: 0.5 neg_ratio: 0.5 """ @init_charger def __init__(self, data, config, params, *args, **kwargs): """ Create a NAIS instance. (see https://arxiv.org/pdf/1809.07053.pdf for details about the algorithm design choices). """ self._params_list = [ ("_factors", "factors", "factors", 100, None, None), ("_algorithm", "algorithm", "algorithm", "concat", None, None), ("_weight_size", "weight_size", "weight_size", 32, None, None), ("_lr", "lr", "lr", 0.001, None, None), ("_l_w", "l_w", "l_w", 0.001, None, None), ("_l_b", "l_b", "l_b", 0.001, None, None), ("_alpha", "alpha", "alpha", 0.5, lambda x: min(max(0, x), 1), None), ("_beta", "beta", "beta", 0.5, None, None), ("_neg_ratio", "neg_ratio", "neg_ratio", 0.5, None, None) ] self.autoset_params() if self._batch_size < 1: self._batch_size = self._data.transactions self._ratings = self._data.train_dict self._sampler = pws.Sampler(self._data.i_train_dict, self._data.sp_i_train_ratings, self._neg_ratio) self._model = NAIS_model(self._data, self._algorithm, self._weight_size, self._factors, self._lr, self._l_w, self._l_b, self._alpha, self._beta, self._num_users, self._num_items, self._seed) @property def name(self): return "NAIS" \ + f"_{self.get_base_params_shortcut()}" \ + f"_{self.get_params_shortcut()}"
[docs] def train(self): if self._restore: return self.restore_weights() for it in self.iterate(self._epochs): loss = 0 steps = 0 with tqdm(total=int(self._data.transactions // self._batch_size), disable=not self._verbose) as t: for batch in self._sampler.step(self._data.transactions, self._batch_size): steps += 1 loss += self._model.train_step(batch) t.set_postfix({'loss': f'{loss.numpy() / steps:.5f}'}) t.update() self.evaluate(it, loss.numpy()/(it + 1))
[docs] def get_recommendations(self, k: int = 100): predictions_top_k_test = {} predictions_top_k_val = {} for index, offset in enumerate(range(0, self._num_users, self._batch_size)): offset_stop = min(offset + self._batch_size, self._num_users) predictions = self._model.batch_predict(offset, offset_stop) recs_val, recs_test = self.process_protocol(k, predictions, offset, offset_stop) predictions_top_k_val.update(recs_val) predictions_top_k_test.update(recs_test) return predictions_top_k_val, predictions_top_k_test